

SIDDHARTH INSTITUTE OF ENGINEERING TECHNOLOGY :: PUTTUR (AUTONOMOUS)

Siddharth Nagar, Narayanavanam Road – 517583

QUESTION BANK (DESCRIPTIVE)

Subject with Code :ENGINEERING PHYSICS(20HS0848)

Course & Branch: B.Tech -CIVIL/AGRI (I-SEM), ME (II-SEM)

Regulation: R20 Year & Sem: I-B.Tech & I/II-Sem

UNIT- I **WAVE OPTICS**

1			[CO1]	[<i>C</i>] <i>(</i> []	ET 21
1	a	State and explain principle of superposition.	[CO1]	[OIVI]	[L2]
	b	Define interference and summarizing the importance conditions to get sustained interference.	[CO1]	[6M]	[L2]
2	a	Discuss the theory of interference of light due to thin films by reflection with suitable ray diagram.	[CO1]	[4M]	[L1]
	b	Derive the condition for bright and dark rings interference in the case of thin films by reflected light.	[CO1]	[8M]	[L4]
3	a	Describe the formation of Newton's ring with necessary theory with relevant diagram and derive the expressions for dark and bright fringes.	[CO1]	[9M]	[L3]
	b	In a Newton's rings experiment, the diameter of the 5^{th} ring is 0.30 cm and the diameter of the 15^{th} ring is 0.62 cm. Calculate the diameter of the 25^{th} ring.	[CO1]	[3M]	[L4]
4	a	How the wavelength of light sources is determined by using Newton's ring's concept.	[CO1]	[8M]	[L4]
	b	In a Newton's rings experiment the diameter of the 8^{th} ring was 0.35cm and the diameter of the 18^{th} ring was 0.65cm.If the wavelength of the light used is $6000 A^{\circ}$ then find the radius of curvature of the plano-convex lens.	[CO1]	[4M]	[L4]
5	a	What are engineering applications of interference?	[CO1]	[4M]	[L3]
	b	What are engineering applications of diffraction?	[CO1]	[4M]	[L3]
	c	A parallel beam of light of $6000~\text{A}^\circ$ is incident on a thin glass plate of refractive index 1.5 such that the angle of refraction into the plate is 50° . Calculate the least thickness of the glass plate which	[CO1]	[4M]	[L4]

will appear	dark by reflection.

- 6 Define diffraction? Distinguish between Fraunhofer and Fresnel's [CO1] [6M] [L2] diffraction,
 - Compare Interference and Diffraction. [CO1] [6M] b [L2]
- 7 In the study of Fraunhofer diffraction due to single slit how the [CO1] [8M] [L2] diffraction fringes formed.
 - Obtain conditions for bright and dark fringes in single slit [CO1] [4M] b [L4]diffraction pattern and draw intensity distribution.
- 8 Describe Fraunhofer diffraction due to double slit and derive the [CO1] [8M] [L2]conditions for principal maxima, secondary maxima and minima.
 - A plane transmission grating having 4250 lines per cm is [CO1] [4M] [L4]b illuminated with sodium light normally. In the second order spectrum, the spectral lines are deviated by 30°. What is the wavelength of the spectral line?
- 9 Define diffraction grating and write about construction of [CO1] [8M] [L1]diffraction grating.
 - b Find the highest order that can be seen with a grating having [CO1] [4M] [L4]15000 lines/inches. The wavelength of the light used is 600nm.
- 10 Define following terms [CO1] [6M] [L1]a
 - i. Grating spectrum ii. Grating element
 - How wavelength light is determined by diffraction grating. [CO1] [6M] b [L4]

UNIT -II

CRYSTALLOGRAPHY& X -RAY DIFFRACTION

1	a	What is (i) Unit cell (ii)space lattice (iii) Bravais Lattice iv)Lattice parameters.	[CO2]	[4M]	[L1]
	b	Explain the various types of crystal systems with a neat sketch and examples.	[CO2]	[8M]	[L4]
2	a	Derive the packing factor of SC.	[CO2]	[6M]	[L4]
	b	Derive the packing factor of BCC.	[CO2]	[6M]	[L4]
3	a	Define coordination number and atomic packing factor.	[CO2]	[4M]	[L1]
	b	Show that FCC is mostly closed packed structure than BCC and SC.	[CO2]	[8M]	[L4]
4	a	What are Miller indices? Mention the procedure to find Miller indices.	[CO2]	[8M]	[L2]
	b	Write the important features of Miller indices.	[CO2]	[4M]	[L1]

		Ψ.	ESTION B	71111	2022
5		Deduce the expression for the interplanar distances in terms of	[CO2]	[8M]	[L4]
		miller indices for a cubic system. Draw miller indices of planes (1 0 0), (1 0 1), (0 0 1) and $(\bar{1}\ 0\ 0)$	[CO2]	[4M]	[L4]
6		State and explain Bragg's law of X-ray diffraction.	[CO2]	[8M]	[L4]
,		Find the ratiod ₁₀₀ :d ₁₁₀ : d ₁₁₁ for a simple cubic structure. Consider a body centered cubic lattice of identical atoms having	[CO2]	[4M] [9M]	[L3]
		radius R. Compute 1) The number atoms per unit cell	[CO2]	[JIVI]	[L2]
		2) The coordination number			
	b	3) The packing fraction.	[CO2]	[2]/[]	Γ Ι 41
		the radius of atoms in α –iron belonging to BCC structure. Take	[CO2]	[3M]	[L4]
		the density of α - iron as 7860kg /m ³ and atomic weight of iron as 55.85.			
		What is Bravais lattice? What are the different space lattice in the cubic system.	[CO2]	[8M]	[L1]
	b	For a cubic system, if 'a' is the lattice constant, then find the	[CO2]	[4M]	[L3]
		interplanar separation for (111) planes.			
)	a	Explain how the X-ray diffraction can be employed to determine	[CO2]	[9M]	[L4]
		the crystal structure.			
	b	The Bragg's angle for reflection from the (111) plane in a FCC	[CO2]	[3M]	[L4]
		crystal is 19.2° for an X-ray wavelength of 1.54 A.U, Calculate			
		cube edge of the unit cell.			
0		Explain the principle, procedure and advantage of Debye-Scherrer	[CO2]	[9M]	[L2]
		(Powder method) of X-ray diffraction.	[002]	[>]	[]
		Find the angle at which the third order reflection of X-ray of	[CO2]	[3M]	[L3]
		0.79A° wavelength can occur in a calcite crystal of 3.04x10 ⁻¹⁰ m	[CO2]		
		spacing?			
		UNIT-III			
		ACOUSTICS AND ULTRASONICS			
1.	(a)	Define i) Reverberation ii) Reverberation time iii) loudness and iv) intensity of sound.	[CO3]	[4M]	[L1]
	(b)	•	[CO3]	[8 M	[L1]
2.	(a)	Define absorption coefficient of sound and derive it?	[CO3]	[7 M	[L4]
	(b)	2		[5 M	
		seconds. Calculate the total sound absorption coefficient of the	e -		
		class room?			
3.	(a)		[CO3]	[7 M	[L1]
٦.		controlling the reverberation time?			
	(b)			[5 M	[L4]
		of 2 seconds. If the area of the sound absorbing surface is 350)		
		m ² , calculate average absorption coefficient?	[003]	[O] #3	L LT 13
	(a)	-	[CO3]	[8M]	[L1]
4.		(1) Reverberation (2) Absorption coefficient			
		(2) Absorption coefficient(3) Pitch and Loudness of sound			
		(3) I fiell and Loudness of sound			

		(b)	A class room of volume 200 m ³ has a reverberation time 1.6 seconds. Calculate the total sound absorption coefficient of the class room?	[CO3]	[4 M]	[L4]
	5.	(a)	What is the importance of acoustics in engineering	[CO3]	[6 M]	[L1]
		(b)	How we optimize the reverberation time in the music halls?	[CO3]	[6 M]	[L2]
	6.	(a)	Write the properties of Ultrasonic waves.	[CO3]	[6 M]	[L1]
		(b)	Explain the detection methods of Ultrasonic waves.	[CO3]	[6 M]	[L2]
	7.	(a)	Explain Piezoelectric effect.	[CO3]	[4 M]	[L2]
		(b)	Describe the application of Ultrasonic in non-destructive testing (NDT) of material	[CO3]	[8 M]	[L2]
	8.	(a)	How ultrasonics are produced by using piezoelectric generator?	[CO3]	[8 M]	[L2]
		(b)	A quartz crystal has a thickness of 4×10^{-3} and density 3×10^{3} kg/m ³ . Calculate its fundamental frequency. Give the Youngs modulus of crystal is $8.2 \times 10^{10} \text{ N/m}^2$.	[CO3]	[4 M]	[L4]
	9.	(a)	Give the important applications of ultrasonic waves?	[CO3]	[6 M]	[L2]
		(b)	How will you classify sound waves based on their frequencies?	[CO3]	[6 M]	[L2]
	10.	(a)	Write brief note on medical applications of ultrasonic waves?	[CO3]	[6 M]	[L1]
		(b)	What are the characteristics of sound?	[CO3]	[6 M]	[L1]
			$\mathbf{UNIT} - \mathbf{IV}$			
			MECHANICS OF SOLIDS			
1	8	ı D	Define the following	[CO4]	[5M]	[L1
		i)	Elasticity ii) isotropic materials iii) rigid body iv) Plasticity) Hooke's law			-
	t		What is stress? Explain different types of stresses.	[CO4]	[7M]	[L4]
2			What is Hooke's law? Explain.	[CO4]	[4M]	[L1]
	ł		Describe the behavior of a wire under an increasing load.	[CO4]	[8M]	[L2]
3	8	ı L	Define i) Young's modulus ii) Bulk modulus	[CO4]	[4M]	[L1]
		_	iii) Rigidity modulus iv) Poisson's ratio	FCO 41	FOD #1	FT 43
4	t		Derive the relation between different elastic moduli.	[CO4]	[8M]	[L4]
4	i t		Mention different types of supports. Calculate Poisson's ratio for silver.	[CO4] [CO4]	[8M]	[L1]
	ι		Given its Young's modulus = 7.25×10^{10} N/m ² and bulk modulus =	[CO4]	[41/1]	[L4]
		1	$1 \times 10^{10} \text{ N/m}^2$.			
5	8		Classify different types of beams.	[CO4]	[8M]	[L2]
	ł		Obtain an expression for the internal energy due to strain.	[CO4]	[4M]	[L4]
6	8		Define strain. Explain the types of strain.	[CO4]	[8M]	[L2]
	t		wire of 3.0 m long and 0.625 sq.cm in cross section is found to	[CO4]	[4M]	[L1]
		S	tretch by 0.3 cm under a tension of 1200 kg. What is Young's			
		n	nodulus of the material of the wire?			
7	8	ı D	Define Young's modulus and bulk modulus.	[CO4]	[4M]	[L1]
	t		Obtain the relation between the Young's modulus and bulk	[CO4]	[8M]	[L4]
0			nodulus.	500.41	5 43 63	FT 43
8	2		Define Young's modulus and rigidity modulus.	[CO4]	[4M]	[L1]
	ł		Obtain the relation between rigidity modulus and Young's modulus.	[CO4]	[8M]	[L4]
9	8		Define shear strain. Explain how shear strain is related to modulus	[CO4]	[8M]	[L2]
,	Č		f rigidity.	[CO4]	[0141]	[گگ]
	ŀ		The Young's modulus for steel is $Y=2x10^{11}N/m^2$ and its rigidity	[CO4]	[4M]	[L4]

- modulus η =8x10¹⁰N/m². Estimate the Poisson's ratio and its bulk modulus.
- Deduce an expression for energy stored per unit volume in 10 [CO4] [7M] [L4] stretched wire.
 - Estimate the work done in stretching a wire of cross section 1.25 [CO4] [5M] [L4] mm² and length 1.9 m through 0.14 mm. The Young's modulus of wire is $45 \times 10^9 \,\text{N/m}^2$.

UNIT-V SUPERCONDUCTIVITY AND PHYSICS OF NANOMATERIALS

1	a	Define Superconductivity? And Prove that super conductor is a very good diamagnetic material.	[CO5]	[8M]	[L5]
	b	Write the properties of Superconductors.	[CO5]	[4M]	[L1]
2	a b	Explain the Type-I and Type-II superconductors. What is Meissner effect? Explain how Superconductors are behave like a Diamagnetic material.	[CO5] [CO5]	[8M] [4M]	[L2] [L1]
	U	behave like a Diamagnetic material.			
3	a	Explain BCS theory of superconductors.	[CO5]	[8M]	[L2]
	b	Calculate the critical current for a lead wire of 0.5mm radius at 4.2 K . Given for lead $T_c = 7.18 K$, $Ho=6.5 \times 10^4 A/m$.	[CO5]	[4M]	[L3]
4	a	i) Define Flux Quantization?	[CO5]	[2M]	[L1]
		ii) Explain flux quantization?i) Define Critical Temperature?	[CO5]	[6M]	[L2]
	b	ii) A superconducting material has a critical temperature of	[CO5]	[2M]	[L1]
		3.7K and a magnetic field of 0.0306T at 0 K. Find the	[CO5]	[2M]	[L3]
5	a	critical field at 2K. Explain DC and AC Josephson effects in superconductors.	[CO5]	[8M]	[L2]
	b	What are the applications of superconductors.	[CO5]	[6M]	[L1]
6	a	i) What is nanomaterial?ii) Write the classification of nanomaterials.	[CO6]	[2M]	[L1]
			[CO6]	[4M]	[L1]
	b	Explain the basic principle of nanomaterials.	[CO6]	[6M]	[L2]
7	a	i) Define Nano Science and Nano Technology?	[CO6]	[2M]	[L1]
,	u	ii) Explain the concept of Quantum Confinement in nano materials.	[CO6]	[4M]	[L2]
	b	What are the applications of nanomaterials in different fields.	[CO6]	[6M]	[L1]
	U	••		[OIVI]	[121]
8	a	Explain why surface area to volume ratio very large for nano materials?	[CO6]	[6M]	[L2]
	b	What are the mechanical, magnetic and optical properties of nanomaterials.	[CO6]	[6M]	[L1]
9	a	What are the techniques available for synthesizing nanomaterials?	[CO6]	[4M]	[L1]
	b	Explain ball milling technique for synthesis of nanomaterial?	[CO6]	[8M]	[L2]

Explain Sol-Gel technique for synthesis of nanomaterial? 10 a [CO6] [8M] [L2]

b What are the advantages of sol-gel process? [CO6] [L1] [4M]

Prepared by: Department of Physics